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An unbalanced dynamically symmetrical gyroscope in gimbals with constructive imperfections is considered 

in a central Newtonian field of forces. It is assumed that there is a moment of farces of viscous friction acting 

on the axis of rotation of one of the rings of the suspension and an accelerating (electromagnetic) moment 

applied to the axis of rotation of another ring. The equations of motion have a partial solution for which the 

basic plane of the frame is perpendicular to the direction from the specified fixed point of the frame to the 

centre of gravitation, the basic ptane of the mantfe is parahel to this direction and the rotor rotates with an 

arbitrary constant angular velocity. 

The equations of perturbed motions of the reduced system with two degrees of freedom are obtained to 

within third-order terms at the corresponding position of equi~~b~~rn. In the domain of admissible values OF 

the parameters F0 the characteristic equation of the system is considered and its coefficients are written 

down. A domain in Fe is specified in which complex conjugate pairs of the eigenvalues have small moduli of 

the real parts but the absolute values of the second- to fourth-order off-resonance mistuning between the 

imaginary parts are not small. For an imperfect gyroscope in gimbak with dissipative and accelerating forces 

the sufficient conditions of the local uniform boundedness of motions perturbed with respect to the specified 

partial solution are obtained in this domain. The conditions found provide the local uniform boundedness of 

solutions irrespective of the forms of higher than the third order in the equations of perturbed motions. 

These conditions are obtained in the form of constraints for the coefficients of the normal form and, finally, 

for the original parameters of the system and the real and ima~na~ parts of the eigenvaiues. To provide a 

cfear interpretation of the results, special cases when ah but two parameters are fixed are anafysed. The 

domains of tocai uniform boundedness are constructed in the two-dimensional domains F. using a personal 
computer. 

THE KINETIC energy, the force function and the equations of the angular momentum for a compound 
threw-dimensional pendulum moving in the uniform field of gravity forces have been obtained in 111. 
A generalized gyroscope in gimbals [Z], a gyroscope in gimbals with constructive imperfections and 
a perfect gyroscope ]3] are special cases of the compound three-dimensionai pendulum. The local 
boundedness motions of a perfect gyroscope in gimbais with dissipative and accelerating forces has 
been examined in 141. 

I. PARTIAL SOLUTION OF THE EQUATIONS OF MOTION. 

STATEMENT OF THE PROBLEM 

Let us consider a massive gyroscope in gimbals with constructive imperfections in a Newtonian 
field of forces with the centre S. The outer ring S2 (the frame) has the axis of rotation l2 fixed on a 
stationary platform perpendicular to the direction C&S. Here O2 is a point on the I2 axis whose 
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position will be specified below. The I, axis of rotation of the inner ring S, (the mantle) is fixed in the 

body S2, The I, axis, in general, is not the main or central one for the ring S,,, . rn = 2. ! ~hc 
gyroscope So (the rotor) rotates about the I,, axis of dynamical symmetry. This axis contains the 
centre of mass of the rotor and is fixed in the body fl . The set 1, (n = 2, I, (I), in general, does not 
contain any pair of orthogonal or intersecting axes. We assume that there is a moment of forces of 
viscous friction acting on the axis of the outer (or the inner) ring and there is an electromagnetic 
device on the axis of the inner (or the outer) ring which produces an accelerating moment acting in 
the direction of rotation of the ring and proportional to the angular velocity ot its rotation [5_ 
p. 1821. We will assume that there is no moment of friction forces about the axis of rotation of the 
gyroscope or that it is balanced by an eIectromagnetic moment applied to the rotor 16, p. 851. 

The plane passing through the 1, axis and parallel to the f,,. i axis (m = 2. 1) will be referred to ai 
the basic plane of the ring S, , while the basic plane of the ring S,, will correspond to any plane which 
passes through the axis of symmetry I,,. We will introduce into the consideration the following 
orthogonal right-handed systems of coordinates. The system O*XYZ is attached to the stationarv 
platform, the 0*X axis is directed to the centre of gravitation S, and O2 Y is in the direction of the 
stationary l2 axis. The system O,&,, q,& is attached to the body S,, (n = 2, I, O), the O,,& axis is in 
the direction of I,, and 0,~~~ is likewise in the basic plane of the body S, . The point O{, is placed at 
the centre of mass of the rotor. We specify the point O,, of the I,,, axis in such a way that the poinr 

O,,_ 1 is in the coordinate plane 0,~~ &,, (m = 1,2). 
The angle between the 0,X and 02& axes is equal to 7r/2/2, and the constant angle between the 

O,& and O,_i &,_- i axes is denoted by E,,, (m = 2, I). Let X:, , y:, and z:, be the coordinates of the 
centre of mass of the body S, with respect to the system O,,& q,,i;l (n = 2, 1,O). and let X,:, , Y,‘,, a1c1 
Z:,, be the components of the vector 0,O ,,,_. i with respect to the system O,, &, q,,{ j,,, (m = 2, I). WC 
have xl; = yd = zC; = Xi = Xi = 0. 

We will assume that the basic planes of the bodies in the initial positions are parallel to each other 
and to the direction 02S. The current position of the system under consideration will be specified by 
the Cardan angles $, 8 and cp. The angle itr of rotati~?n of the frame S2 specified in the plane 
perpendicular to the 1, axis is the angle between the stationary plane 02XY and the basic plant 
02& q2. The angle 13 of rotation of the mantle S, (the angle cp of rotation of the gyroscope SC, itself I 
specified in the plane perpendicular to I, (1,)) is the angle between the basic planes 01~27~1 and 

0151 rll (0151 rll and OOSOVO). 

The equations of motion of the imperfect gyroscope in gimbals with dissipative and accelerating 
forces acting in the axes of the suspension rings have the form 

p. = -aH/ag -- FaH/i+p, (I’= aff,Bp i 1.1) 

Here H = H( I ) is the Hamilton function, p = (. )’ are the generalized momenta corresponding to 
the coordinates q = (I/J, 8, cp)“‘, F = diag(k,,r. k,, k,) is the matrix of the Kayleigh function 

F = Hk$ (a~~~~~ )’ + Wke (a~~~p~)’ 

k,>O (or k,>O) is the coefficient of viscous friction acting on the axis of the frame (or of the 

mantle) and k0 ~0 (or k,,, CO), thus, j kH 1 (or 1 k, I) is the steepness of the characteristic of the 
electromagnetic device which is located on the axis of the mantle (or of the frame) and produces an 
accelerating moment with k+k,<O. For brevity, we will not write the Hamilton function I-? here, 
noticing that its expression contains, apart from the magnitudes mentioned above, the foIlowing 
quantities. B, and Aii (i, j = 1,2,3, i<j) are the components of the tensor of inertia of the outer and 
inner rings, respectively, A and B are the components of the diagonal tensor of inertia of the 
gyroscope, AT, =A,,+Mo(Y;2+Z;2), A?q=A2z+MoZ;Z. A&=A~,~+MoY’,‘, .~?,-A,,. 

AT, = Au, A$? = AZ1 - MI,Y;Z;, M, is the-mass of the body S,, (n = 2, 1. 0), M = 134, + M,,. 
5; = M-‘Mlx;, q; = M-Qzly; +M,Y;), 5; = M~l(M,z~+M~,Z~), g is the acceleration of the 

gravity force at the point O1_, and R is the distance between the points 01 and S. 

Since the Hamiltonian Ii does not contain the angle P of rotation of the gyroscope explicitly and 
the forces acting in the rotor axis are balanced, system (1.1) has the integral ,v* = const and a 

reduced system with two degrees of freedom can be extracted from Eqs (1.1). 
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Let the conditions 

I&y; tMY; tM$rsirlE~ =o, r; =o 

BzJ tAIZsine2 +(A--B)sine2coseIsine, =O, AZ3 =0 
(1.2) 

hold. 
The equations of motion (1.1) of the imperfect gyroscope in gimbals then have the partial solution 

pJ, =AW’coSE~COSEr, PO =Ao’coser 

pv=Aw’, Jl=e=lr/z, (P=c4itt(Po (1.3) 

According to this solution, the basic plane of the frame is perpendicular to the OzS direction, and 
the basic plane of the mantle is parallel to OzS and contains this direction if Y; = 0; the latter 
condition, in general, is not assumed in advance. The gyroscope rotates with an arbitrary constant 
angular velocity w’ . The second condition in (1.2) means that the centre of mass of the 
“mantle-rotor” system lies in the basic plane of the mantle. The set of the first two conditions in 
(1.2) means that the centre of mass P of the system of three bodies S, , S1 and Sc, lies in the plane 
which passes through the centre of gravitation S and the l2 axis while the system executes steady 
motions (1.3). The third and fourth conditions in (1.2) of the existence of solution (1.3) occur 
because of the assumption that the Newtonian field is central. 

We will examine the sufficient conditions for local uniform boundedness [7, 81 of the perturbed 
motions of an imperfect gyroscope in gimbals with dissipative and accelerating forces acting in the 
axes of the suspension rings with respect to the variables p*, pe , pF ,4 and 8 for steady motions (1.2) 
when there are parametric perturbations of the constructive parameters of the system. 

2. THE EQUATIONS OF PERTURBED MOTIONS OF THE REDUCED SYSTEM (1.1) 

Let us find the equations of perturbed motions of the reduced system in the neighbourhood of the 
position of equilibrium 

pJ, =AW’COSE2COSEl, pe =AW’COSel, J/=o=n/z, 
(2.1) 

which corresponds to the steady motions (1.3) of original system (1.1). We set 
p+ = A~‘CO~E~COSE~ +p; , pe = Ao’coscl +p;, I) = 1~12 + qi ,8 = 7~12 + q; and find the expansion of 
the Hamilton function of the reduced system in the neighbourhood of equilibrium (2.1) to within 
fourth-order terms with respect to the perturbations pk and qh (m = 1,2). We introduce the new 
dimensionless variables pm and qm (m = 1,2), the time T, the angular speed w, the coefficients k, 
and the parameters bi, aij) a$ (i, j = 1,2,3, isi), b, Yz,Zz, Yl , Z1 , & ,771, m ,6, e by the formulae 

o* = (gk&Z; +MZ; +Mn’, I/A)“, pk =Ao,p, 

(I:, = 9m (m = 1,2), t = U;‘T, w’ = u.w, kJ, =Au,kl 

Bii 
ke =AU,kz, bi=- Aii 

A , aii= A - (a2 3 = 0) 

(2.2) 

6=2- 
Ru: ’ 

e = sign(M2zb + MZ; + Mr);) 
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The dimensionless parameters E, and + remain the same. It turns out that there are 23 
independent dimensionless parameters. 

We obtain the expansion of the Hamilton function of the reduced system expressed in terms oi 
the dimensionless variables as 

H=HZtHstH.,+... 
17.3) 

VI. . . ., v, are non-negative integers, / v/ = vt + . . t v4. The non-zero coefficients h, ,,‘, rl,iV, of the 
forms Hz, H3 and El4 are 

2h 2000 = @ODO> hIlO = -@oDo, h,,,, = -~o@o~o, 2hozoo = @oDo, 

h OlCl =no@oDo, 2hoozo =et3Shzo, hooIl =mcose2t36h11, 2hoooz = 

=n;QoDo th t 36h02, 2h2001 = -OoD1, h,,,, = -rP,Do +(PoD1, hi002 =n,,OoDl, 

2ho201 =\kJ’o-\koD~, hoI,, =vro(@~Do -*oD,), ho021 = 36cosezh12, 

2Aoo12 = 36h,2, 2hoo,,s = -n;OoD1, 2hzooz =@J’z, h~~oz = --&Do +Q,D, - 

-Qo&, hxoo3 =~oQoWDo -D,>, 2hozo2 =*kzDo-*~Dl +*oD,> (2.4, 

2h 0103 = n,(-I/$ a0 +2&)D, + 2no(-@lDl +(P&), 2h00,+o = -1/12e-6h,., 

hoosl = -‘1/6mcosez -26L1,,, - 2hoozz - -%m t 3&h22, hools = --‘/6mcosez -- 

-26(h,,, + 3/4a133~E2) 

2hooo4 T n$@,(-‘/sD, + Dz) - 1/12m - Sho2 

Here 

h20=b2-b3+a11sin2e2-a2z ta,sCos2E2-a13sin2e2t (b- l)(sin%, -sin2E2C0s2E~) 

h,,=(-a22t~33)cose2-a13sin~2t(b-l)cos~2sin2~, 

ho2 = -az2 fuss + (b- l)sin2eI, hlz = sine2(-aI2 + (b- l)coseIsin&,) 

h22=(a22-a33-(b- l)s~z~*)(~~cos2~2)t~~~3~n2&~ 

7ro = wsinE2sinE,, O. =@f, + bsin2e, 

\ko=bl ta;~cos2E~ ta;3sin%~taf&n2E2 tb(1-Cos2E2COS%,)+ Y2” +z,’ + 

t2Y,llsinE2 t22,7), 

@o=n~1crtse2+~~3sin~2tbcos~zsin2~,+Z2~1~~~e2t Ao=@o~o-@~, &=A,” 

91 =ai2sin2e2 t2a13sin2e2 -Mbsin2E2sin2E1 --2Y,1)1~o~~2 

cp, =a;zsin~~-%bsine,sin2~,- Y2Ql 

A1 = Oo\kl - 2+o+I, Dl = AL\,Ai2 

\k2 = (ai -a;s)sin2e2 - %a;3sin2ez- bsin2e2sin2ez -Zzrll, 

G2 =-?4(a;,sin~~ +Z,rtIcosq), A,=OO\k2 -@‘f-2@ocljfZ, Dz=(A:-AoA21A,3 

The equations of perturbed motions of the reduced system in the neighbourhood of equilibrium 
(2.1) for the dimensionless variables defined by (2.2) have the form 

dp,,Jdr = -aH/aq, - k, aHlap,, dq,/dr = ~H&J,,, (m = 1,2) (3.6) 

Remarks. 2.1, When considering the approximate investigation of the central Newtonian field it is assumed 

that the distance R should be much greater than the dimensions of the gyroscope in gimbals. For this reason, 
the dimensionless parameter S is smali. The limiting case 6 = 0 corresponds to the uniform field of gravity 
forces. 
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2.2. If the centre of mass P of the system of three bodies S,, S, and So and the centre of gravitation S are 
located on one side (or on different sides) of the basic plane of the frame & when steady motions (1.3) are 
occurring, we obtain e = 1 (or e = -1). 

3. THE CHARACTERISTIC EQUATION. ASSUMPTIONS ON THE PROPERTIES OF THE 

EIGENVALUES 

Consider the domain of admissible values of the parameters 

Fo=Ic=(w,kl,kz,b b b 1, 2, 3,al,,alz,a,3,azz,a33,b,Ez,E1, Yz,z2, YlrZ~>ti>rl~, 

m,6): kl>0,k2<O(or kl<0,k2>O),bl+b2>b3,b2+b3>bl, b3t6, >bz, 

~,lta22>a33,a22 +a33>allra33 +all >a22,alta22 --at2 >Op41Q22u33 - 

-ff22a;3-(133@:2>0, b>%, e2E[O,@,elE[O,n), r)~rn>O,&,>O, 
S is a small positive quantity}, and e = +l. 

The characteristic equation of system (2.6) has the form 

X4 +P,X3 +(P2 tQ2)A2 +P3htQ4 =0 

If we calculate the coefficients of system (3.1) as in [9], we obtain 

(3-l) 

PI = (k, O0 + k2 \kO)D,, Pz = kl kz& 

Q2 = (II; t @,(e + 36hzo) -2@&2COS~~ + 36hl I)+ \ko(m + %h,,))&, 

P3 = (kl(m t 36h02) t k2(e t 36h2,-,))D,,, 

Q4 = ((et 36h2,)(??l+ 36h02)- (??tCOSE2 + 36hr1)~)& 
(3.2) 

The substitution of formulae (2.5) into (3.2) yields the final expression for the coefficients of the 
characteristic polynomial in terms of the parameters c E Fo, e = + 1. 

Suppose that Eq. (3.1) has two pairs of complex-conjugate roots. From the Vi&a formulae it 
follows that, under the assumption made above, the condition Q4 >O is necessary. This condition is 
satisfied, according to Remark 2.1, when 1 m / d 1. Using the restrictions having the form of strict 
inequalities on the coefficients of the characteristic polynomial, the decomposition of the domain F0 
into the parts NI, t = 0,4, 2, has been constructed so that the 1 roots of Eq. (3.1) are located in the 
half-plane Reh > 0 and 4 - 1 roots are located in the half-plane Reh < 0 if c E NI . 

If CE No, the uniform rotations (1.3) of the imperfect gyroscope in gimbals are asymptotically 
stable [lo] with respect to the variables pa, pe , pv, II, and 8 under parametric perturbations of the 
constructive parameters. If cEN4U Nz, the steady motions (1.3) are unstable [lo]. But in reality, 
the initial perturbations, generally speaking, cannot be taken from a neighbourhood of the 
unperturbed motion as small as desired specified in advance. Then, the existence of roots of the 
defining equation with only negative real parts is not a criterion of stability, while the existence of 
roots with positive real parts is not an indication of instability regardless of the non-linear terms in 
the equations of perturbed motions [ll]. The problem of the qualitative behaviour of the solutions 
of Eqs (2.6) of perturbed motions as a function of the non-linear terms remains unsolved. 

In order to examine the local uniform boundedness of solutions of system (2.6) with respect to the 
origin of coordinates we will introduce additional assumptions on the properties of the eigenvalues.? 

Assumption 1. All the roots of the characteristic equations (3.1), (3.2) have real parts of small 
magnitude. 

t The definition of local uniform boundedness used in [7, 81 for the solutions of an autonomous system of the form (2.6) 

was stated in: BELIKOV S. A., Local boundedness of solutions of a fourth-order autonomous system with small positive real 
parts of the eigenvahtes, Leningrad, 1987. Unpublished paper. Deposited in VINITI 26.03,87,2206-B87. 
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Denote the roots of Eqs (3.1) and (3.2) by EL. cy,, -t & (m = 1,2) where I_L > 0 is a small parameter. 
a, = O(l), and & >O. We will assume, to fix our ideas, that pi >&. 

Consider the hypersurface of codimensions 2 

PO = {c: CEF,, Pl(c)=O, P3(c)=O], e= +l 

and the domain 

G=!c:cEF,,, Pz(c)+QZ(~)>2(Q4(c))1/2f, e=kI 

We notice that for c E PO n G all the eigenvalues are pure imaginary (p = 0). For Assumption 1 to 
be satisfied the inclusion c E e is necessary and c E fin G is sufficient. Here p’: is a small 
neighbourhood of the surface Pa such that for any c E fi the values of / PI (c) 1 and ! P.7 (c) 1 are small 

andp= O(lPiI, iP&. 
Let us find the (N+ l)th-order values of the off-resonance mistuning E~.~ = pi - N/l, between the 

imaginary parts pi and /J2 of the eigenvalues, N = 1, 2, 3. 

Assumption 2. The absolute values of the second- to fourth-order off-resonance mistuning 
between the imaginary parts of the roots of characteristic Eqs (3.1) and (3.2) are not small. 

Consider the hypersurfaces of codimensions 1 

R2 =Ic:ceFo, P2(c)+Q,<c)=2(Q4(c))Y'~ 

R3=ic:cEFo, Pz(c)+Q,(c)=5/2(Q4(c))1/;1 

R4=1c:cEF,,, P2(c)tQ2(c)= 10/3(Q4(c))“l, e=+l 

Note that R2 is the boundary of the domain G while R,C G and R4C G. If the inclusion 

eMV%+i holds, the absolute values of the off-resonance mistuning l r,~(c) (N = 1,2,3) is small. 
Because of Assumption 2, we exclude from consideration a small neighbourhood Rk+, of the 
surface RN+, , such that (cE~nG\R~+,)/E1,N(c)I>~~, N= 1, 2, 3. 

4. NORMALIZATION OF THE EQUATIONS OF PERTURBED MOTIONS AND THE 

SUFFICIENT CONDITIONS OF THE LOCAL BOUNDEDNESS 

Let the inclusion CE P$fl G\Ry hold. The linear change of the variables z = Sx, z = (pi, p2, q1 _ 

q2jT, S = II.vAl;t,~=~, detSf0, x = (x1, x2, x3, _Q)~ transforms the matrix B of linearized system (2.6) 
into the real Jordan form. We shall write down the elements of the matrix S. If we put 

I”1 =k,(pcu,cPO t n,)t@,(et 3&h,,) -\ko(mc0s~2 + 36h11), ii =klPr%, 

r2 =(@cY~)~ -p~)A,,+~ffl(klO,, -aO~O)t~O(et3~~2O)-~O(~cOS~2+3~~11) (4.1) 

i2 =211(~~PlA,+p,(k,Q,-n,~~), r3=((pQlj2 -bf)@o tPa~R~> 

i3 =/3,(2~c~,~~tn,), r4=((pa1)2-_(j:)P~ tk,PQl, i4=Ij1(2w1*otkl), 

g(cq,&)= lw(r1i3 - ilr3 - r2i4 ti2r4)-&(r1r3tili3-r2r4-i2i4)- 

-(pcrlil t&r,)(mcose2 +36h,,)+ (p,i2 +C(,r2+noi3)(e+36h2~)I-lk 

we have 

sll =(-wlrl t&i1 -no(et36h20))g(o11,/31) 

~~~=(-~ol~r~+P,i~)g(ol~,P~), sg1=(r3tmcoSf2t36h,,)g(oI,,C1,), 

S41=-(r4tet36h20)g(~1,P1), S13=(I1(YliltP1rl)g(al,Pl) 

S23 =(I.lcr,iztPlr,)g(oll,pl), S33=--i3g(~19P1), S43 =i4g((y1,P11 

(4.2) 
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The formulae for sk2 and sk4 (k = 1, . . . , 4) are obtained from the eXpreSSiOnS for skr and Sk3 

(k=l, . ..) 4), respectively, by making the changes ol++ and PI-+& in (4.1) and (4.2). 
Substitution of (4.1) and (2.5) into (4.2) yields the final expressions for the elements of the matrix S 
in terms of the original dimensionless parameters CE tin G@ and the quantities (Y, and Pm 
(m = 1,2). 

Suppose the inclusion 

holds. 

cEp,o nG\(R; UR; UR:) (4.3) 

As a result of the normalizing transformation constructed by the Deprit-Hori-Kamel method, the 
system of ordinary differential equations x obtained from (2.6) by the change of variables z = Sx can 
be reduced to the normal form which is continuous at the point Jo = 0 with respect to the parameter 
p to within third-order terms with respect to the variables transformed (see the paper mentioned in 
the previous footnote and [4]). We denote the coefficients of the continuous normal form by co,,10 
and qm,ol (m = 1,2) [4]. The expressions for these coefficients in terms of h,,,Y2Y3Y4 (2.4), (2.5), 

1~1 =3,4,k,, cr, , & (m = 1,2) and the elements of the matrices S and S-r have been found using 
the analytic results of [9] and of the paper mentioned in the previous footnote. For brevity the 
expressions for the coefficients pm,10 and qm,ol (m = 1,2) obtained are not written here. 

The following theorem on local boundedness holds. 

Theorem. Suppose the parameters c satisfy inclusion (4.3), and e = *l. Let the coefficients qm,lo 
and (~~,~r (m = 1,2) of the continuous normal form, with the set c fixed and e = +l, satisfy the 
following conditions: 

1. CP~,~O<O and v2,01 ~0 if CP~,~O(P~,OI~O or cp1,01~0 and (P~,IO<& 

2. R,~~<O, (~2,10<0 and cp1,10(~2,01>(~1,01(92,10 if cp1,01>0 and CPZ,IO>@ 

Then the solutions of Eqs (2.6) of perturbed motions are locally uniformly bounded with respect 
to the origin of coordinates pm = qm = 0 (m = 1,2) irrespective of the forms of the order higher than 
three. 

Remarks. 4.1. The zero solution of Eqs (2.6) of perturbed motions describes the position of equilibrium (2.1) 
of the reduced system. 

4.2. The assumptions of the theorem contain restrictions in the form of inequalities for the coefficients qm,rO 
and (~~,~i (m = 1,2) of the continuous normal form. Note that, taking account of formulae (3.2), (4.2), (4.1) 
and (2.9, quantities a,,, and p, (m = 1,2) and the elements of the matrices S and S-l are expressed in terms of 
the parameters c (4.3), e = ?l by the use of well-known algebraic relations. If we use the expressions 
mentioned above, which give the coefficients of the normal form, we can interpret the sufficient conditions for 
the local uniform boundedness obtained in the theorem as the conditions imposed on the original construction 
parameters of the imperfect gyroscope in gimbals. 

The theorem on the continuous dependence of the solutions of system (1.1) on the parameters 
and the assumptions of the theorem stated above imply the following result. The perturbed motions 
of the imperfect gyroscope in gimbals with dissipative and accelerating forces acting on the axes of 
the suspension rings are locally uniformly bounded in p+ , pe , pv, JI and 8 with respect to the steady 
motions (1.3) under parametric disturbances of the construction parameters of the system. 

5. INTERPRETATION OF THE CONDITIONS FOR LOCAL BOUNDEDNESS 

IN THE SPECIAL CASE 

The above model of the imperfect gyroscope in gimbals contains many construction parameters. To provide 
an illustrative interpretation of the sufficient conditions for local uniform boundedness as the restrictions on the 
dimensionless parameters c E F0 , consider the sets {c} CGCF,,, e = +l in which values of all but two 
parameters, for instance, b and o, are fixed. A FORTRAN program was written and debugged. It can interpret 
the conditions for local uniform boundedness for any such a set and compute an initial estimate q and a current 
estimate p of the local boundedness of solutions of the normal form. 
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The interpretation of results computed for k, = 15/g, k> = -ti, b, := VA, bz = !/z, bj = /x, u,, = 1, uIL == !:I, 

~~3 = X6/8, az2 = %, a33 = 94, c2 = E, = 7~13. Yz = -%, Z2 = %, Y, = ti, Z, = 0, 5, = X6/4, 7, = ‘/A. m = ?,‘c. 
6 = lo-“, e = +1 is shown in Fig. 1. The analysis was carried out at the intersection of the rectangle 
{h E 1% ; lo]} x {we [2; lo]} and the domain G located above the curve R2. The domain of local uniform 
boundedness is the domain A located at the lower left of the curve LI and the upper left of the curve Z+. Some 
small neighbourhoods of the curves R2, R3 and Rq are excluded from the domain A. 

Calculations were also carried out for many other sets of the parameters mentioned above. We wilt merely 
outline the resuits obtained. For ki > 0, k2 < 0, e = i: 1, the domain A in which the sufficient conditions of local 
uniform boundedn~ss are satisfied, was found in all the cases examined. When e = - 1 the domain A was found 
rather seldom and for quite large vaiues of w. For instance, the case kI = -1518. kl= X. b, =2. hz= I. 
h3 = 72, a,, = Vi, alI = -l/2. n 13 = \/5i2. al2 = t. uji = 1. 62 = E, = ?ri3, Yt = V%. Z? = 1. Y{ = \‘X/:!> 
ZI = 0, {, = -13/12, rlI = - 1, m = -%, 6 = 10e5. e = -1 is characterized similarly. 
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